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Measurements of the Low Wavenumber Wall

Pressure Spectral Density During Transition on a Flat Plate

I. INTRODUCTION

Experimental measurements of the low wavenumber wall

pressure spectral density are currently underway in the transition

region of a flat plate boundary layer. A brief description of

the experiments and of some preliminary results will be given

here.

It is well known that the low wavenumber region of the wall

pressure spectral density (hereafter referred to as just the

low wavenumber region) is much more efficient at exciting marine

structures than the convective region. Considerable effort has

therefore been directed into the measurement of the spectrum

levels in this region, while rejecting the contributions from

the convective region.1-4 The transition region of a boundary

layer may cover a large portion of some structures and thus it

is imperative that the low wavenumber region be well understood

for a boundary layer undergoing transition.

II. EXPERIMENTAL DESCRIPTION

The low-noise, low-turbulence wind tunnel facility of the

MIT Acoustics and Vibration Laboratory is being used to conduct

the experiments. This facility has been used in the past to

study the low wavenumber region,
5 ,6 and the transition process.

7- 8

Its characteristics are described in our previous progress

report (dated 6 October 1983) as well as in Hanson.10  The

-1-
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test setup used in the experiments is shown in Figure 1. This

figure shows that the measurements were made using an open

test section as in Jameson.4 As opposed to a closed configu-

ration, the open test section does not act as an acoustic wave

guide and the resulting acoustic noise levels are lower.

Figure 1 also indicates the approximate locations of the

laminar, transition and turbulent regions of the boundary layer

as well as the position of the microphone array.

The six element (B&K Model #4144) microphone array used

by Farabee & Geib 3 was used as the wavenumber filtering

apparatus. Figure 2 is a schematic of the instrumentation

used in our work. The frequency response of the array was

flat from 3Hz to about 8kHz. The microphones' sensing areas

have 0.89cm radii (R), with a center-to-center spacing (in the

streamwise direction) of 2.69cm d). The microphones were flush

mounted into the test section and their signals were high pass

filtered at 100Hz. The individual microphone gains were

adjusted with a Precision Filters Model 32C02B Preamp/Filter

set so that various shadings could be used. The microphone

outputs were then summed together with alternating phases. That

is, the phase of every other microphone signal was inverted prior

to the summation. The frequency spectrum of this summed signal

(the array output) was then computed with a Hewlett-Packard

Model 5324A Structural Dynamics Analyzer. The signal from

the third microphone (counting from the upstream microphone)

was also analyzed with the 5324A. The wavenumber response

.. . .... .
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of the array (with alternating phases and uniform shading) is

shown in Figure 3.

III. RESULTS

The preliminary experimental results will be presented in

two parts. First, the boundary layer parameters will be

presented followed by results of the wall pressure measurements.

In the transition region, the bulk of the wall pressure

fluctuations at a given point are due to the passage of turbulent

spots. Therefore, the boundary layer parameters of interest

are those characteristic of the spots themselves and are not

merely the time averaged properties.

Boundary Layer Characteristics

The intermittency factor (y) at a point in a boundary layer

is defined as the fraction of time that the boundary layer

exhibits a turbulent nature at that point. It has been shown

that the mean boundary layer properties in the intermittent

region are weighted averages of the corresponding mean laminar

and mean turbulent properties, where y is the weighting factor.

Therefore, the velocity profiles of the turbulent part of the

boundary layer were computed from the measured mean intermittent

profiles, the intermittency factors and the known laminar

profiles. The intermittency factors for several flow conditions

were computed for the third microphone signal using the numerical

techniques described by Gedney. These values for Y were

considered to be representative of the intermittency factors
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for the entire array. The mean boundary layer profiles at

these conditions were measured with a small total head tube which

was traversed across the boundary layer. Figures 4 and 5 show

the measured velocity profiles for two flow conditions compared

to laminar and turbulent profiles. These figures show that the

measured velocity is indeed a weighted average of the velocities

for the laminar and turbulent parts. Figures 6 and 7 show the

velocity profiles for the turbulent part of the flow, computed

from the measurements of Figures 4 and 5 along with the law of

the wake model proposed by Coles.12 The agreement between the

measured profiles and the law of the wake is very good, indicating

that the boundary layer in the open test section was not adversely

affected by the open jet. Table 1 lists the boundary layer

parameters (for the turbulent portion of the flow) at the eight

flow conditions. These parameters were used in the nondimensional-

ization of the wall pressure measurements. Flow speeds of

11, 14, 19 and 24m/s were selected at two roughness conditions.

The roughness conditions were 1) a smooth wall and 2) a 0.02"

diameter trip wire was stretched spanwise across the plate at

the open jet exit plane (see Figure 1). In Table 1 U. is the

freestream velocity, 6 * is the displacement thickness and V, is

the friction velocity.

Wall Pressure Measurements

The frequency spectrum of the microphone array output was

computed for each of three shadings at all eight of the flow

conditions of Table 1. This gave a total of 24 frequency spectra.
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TABLE 1

Roughness*
Run # U..(m/s) Condition y 6 (mm) V*(m/s)

1 11 smooth 0.38 2.03 --

2 14 0.66 1.24 0.68

3 19 0.86 1.40 0.91

4 24 1.0 1.45 1.1

5 11 trip wire 0.63 1.52 --

6 14 1.0 1.35 0.68

7 19 1.0 1.42 0.88

8 24 1.0 1.73 1.0

4 NOTE: V*, was not computed for Run #1 and #5 due to

experimental errors.



a d1CW9% r- .TW-~r~ -.UT ~W -.P VM -. N WV

-6-

The three shadings were: 1) uniform shading; 2) Chebyshev

shading [with lower side lobes and a wider main lobe than the

uniform shading, see Figure 3]; and 3) binomial shading [with

even lower side lobes and a wider main lobe than the Chebyshev

shading]. A typical frequency spectrum of the array output is

shown in Figure 8. The frequency spectrum of microphone #3 at

the same conditions is also shown in the figure. The single micro-

phone results of Figure 8 show a low frequency peak near 200Hz due

to the convective ridge. The decay of this convective response

with increasing frequency is due to spatial averaging on the

diaphram of the microphone. The relatively flat portion of the

single microphone results above 3kHz is due to acoustic noise in

the flow. The frequency spectrum of the array output in Figure 8

shows reductions in the magnitude of the measured pressure at

various frequencies due to the wavenumber filtering character-

istics of the microphone array. The first three peaks in this

spectrum (at about 200, 600 and 1400Hz) are due to the array

responding to the convective ridge in the main, first aliasing

and second aliasing lobes. The broad peak at 5.6kHz is the

response of the array in its main lobe to the acoustic noise.

Likewise, the peak at 3.2kHz is due to the array's first lower

side lobe responding to the acoustic noise (this spectrum was

measured with uniform shading). The measurements of the low

wavenumber region were taken from this curve at the frequency

points above the peak at 1400Hz, where the response of the

array to the acoustic noise was a minimum. In this way the

4N
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low wavenumber results have the least amount of contamination

from either the convective ridge or the acoustic noise for each

test condition. The array's acoustic response minima were

determined from plots of the coherence between the single

microphone signal and the array output.

The coherence is defined by

C (W) I s A(W)j 2
c( =SMMi" SAA(

where C(W) is the coherence, SMA w) is the complex cross spectral

density between the single microphone and the array, and SMM(W)

and S AA(w) are the power spectral densities of these two signals.

Figure 9 is a plot of the coherence function for the conditions

of Figure 8. The minima at 2.4 and 4.2kHz in Figure 9 indicate

the frequency points at which the array had the smallest

*response to the acoustic noise and these frequencies are where

the low wavenumber results were taken. The fact that the

minima in Figure 9 nearly go to zero indicates that the bulk

of the acoustic noise is propagating in the stream direction

The main lobe of the microphone array was centered on

wavenumbers of 1.17cm- 1 in the streamwise direction and 0 in

the spanwise direction. The array's wavenumber response

( 2W(k) 12) and effective wavenumber bandwidths (Akj, streamwise

and Ak3, spanwite) were computed for uniform shading from the

followino rpla Lon given by Farabee and Geib:3

IW(k) 2 Ak Ak 3  5.7(4/N)cm-2

- 3.82cm- 2 , with N-6
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The increases in the streamwise bandwidths due to the

Chebyshev and binomial shadings were 53% and 100% respectively.

It was assumed that the magnitude of the wall pressure spectral

density was constant with wavenumber over the array's main lobe

and a single value for the spectral density was computed.

Figure 10 is a plot of the wall pressure spectral density

in the low wavenumber region plotted in a nondimensional form

versus a nondimensional frequency. In this plot, q is the

dynamic head, y is the intermittency, 6* is the displacement

thickness and U. is the free stream velocity. The data in

Figure 10 were measured at various intermittencies ranging from

0.38 to 1.0 and are compared to results measured in fully

turbulent boundary layers by Martin5 and Jameson.4 Both Martin

and Jameson used the spatial filtering characteristics of

vibrating plates to make their measurements in the low wavenumber

region.

The preliminary results of Figure 10 indicate that there is

no significant measurable difference in the low wavenumber wall

pressure spectral density for a transitional boundary layer as

compared to a fully turbulent boundary layer (at least when

compared to the levels reported by Martin).
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